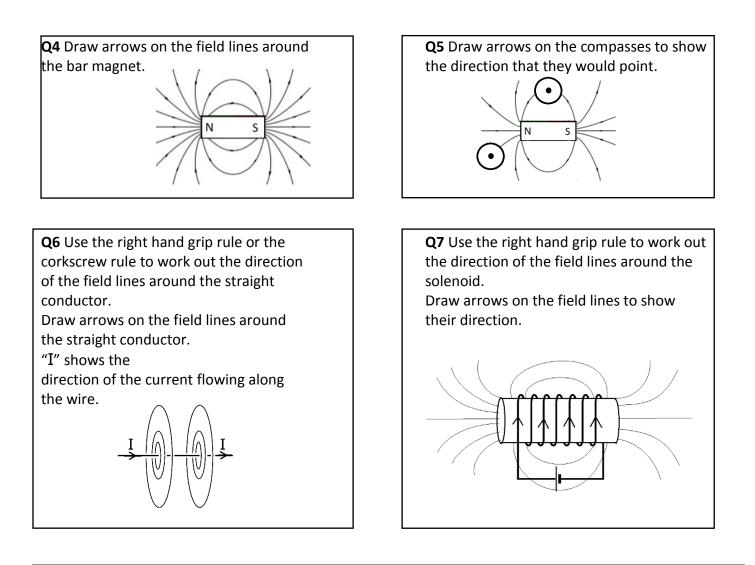
Name	
Total marK:	/ 50
Anything that still nee	eds work?
	B Ecctromagnetism Cornagenetism C


Name

AQA GCSE Magnetism & Electromagnetism Intervention Pack

Q1 Magnets are stron	weaker gest at their		repel	•	non-contact	cobalt	
Two magnets exer	t a force on	each oth	er when t	hey are clo	se enough.		
Two like poles			. Two un	like poles a	attract.		
Magnetic attractio	on is an exan	nple of a			force.		
The region around	l a magnet t	hat affect	s magnet	ic materials	s is called a magne	etic	
Magnets affect ma	agnetic mate	erials.					
The only magnetic	elements a	re iron,			& nickel. Most	steel is ma	gnetic too.
The strength of a r	magnetic fie	ld is			further away fron	n the magne	et.

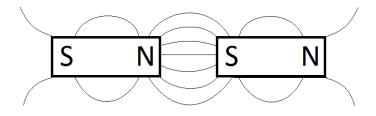
Q2	Repulsion	magnet	permanent	magnetism		
A	. magnet produ	ices its own i	magnetic field.			
An induced magnet becomes a						
An induced magnet becomes magnetised when it is in a magnetic field.						
When an induced magnet is removed from a magnetic field it loses all (or most) of its						
C	juickly.					
c	an only happe	n between tv	vo permanent ma	agnets.		
Attraction can happen bet	ween a perma	nent magnet	and any magnet	ic material.		

Q3	Earth's	lines	pole	magnetic	
Magnetic field	sho	w the directio	n of the force	that would act on	a north magnetic
pole.					
Magnetic field lines run from	the north seek	king		of a magnet to t	he south seeking
pole.					
A compass needle is a small b	ar magnet. The	e compass nee	dle turns to l	ine up with the ma	agnetic field it is
in.					
A compass needle will line up	with the		magnet	tic field unless it is	near another
magnet.					
This shows that the Earth has	a magnetic fie	ld. The Earth's	s magnetic fie	Id is produced by t	the Earth's core,
which is					

Q8 direction current straight changes magnetic					
When a current flows through a field is					
produced around the wire.					
The strength of the magnetic field depends on the size of the					
from the wire.					
The magnetic field around a straight current carrying wire is concentric circles.					
The of the field lines is given by using the right hand grid rule or the corkscrew					
rule.					
A magnetic compass can be used to show that a current flowing through a wire produces a magnetic field.					
If the current through the wire is turned on or off, it the direction that the					
compass needle points.					

Q9	solenoid	increases	combines	shape	uniform
Making the wir	e into the shape o	of a solenoid		the strer	ngth of the magnetic field
created by the	current in the wir	e.			
The magnetic f	ield inside a solen	oid is strong and			
The magnetic f	ield around a sole	enoid has a similai	r	to t	the magnetic field around a
bar magnet.					
The direction o	f the magnetic fie	eld lines around a	solenoid is given	by the right h	and grip rule.
Putting an iron	core inside the so	olenoid increases	the strength of t	he magnetic f	ield of the
A solenoid proc	duces a much stro	onger magnetic fie	eld than a straigh	t wire carryin	g the same current. That is
because each le	pop of wire produ	ices a field at leas	t as strong as a s	traight condu	ctor, and the field
produced by ea	ach loop		to give a stronge	r overall field.	
A solenoid with	an iron core is ca	alled an electroma	agnet.		

HIGHER TIER ONLY


Q10	length	current	motor	tesla	left	flux	newton
When a current	carrying wi	re is placed ir	n a magnetic i	field the m	agnet prod	ucing the f	field and the
conductor exert	a force on	each other (u	nless the wir	e is paralle	l to the fiel	d lines).	
This is called the	2		effect.				
The direction of	the force p	roduced on t	he wire is giv	en by Flem	ning's		hand rule.
The size of the f	orce depen	ds on the size	of the		, th	e strength	n of the magnetic field
(the magnetic		d	lensity) and t	he		of tl	ne wire in the
magnetic field.							
For a conductor	at right ang	gles to the ma	agnetic field a	and carryin	g a current:		
force = 1	magnetic fl	ux density 🗙	current × ler	ngth	F = BIt	1	
where:		e, F, in netic flux dens		ŗ		т	
		ent, I, in ampe					
		h, <i>l</i> , in metr	••••			- /	

Q11	magnet Curren	coil side A	axle S magnet	coil side B	
	current	opposite	rotate	motor	
A coil	of wire carrying a current i	n a magnetic field te	nds to		
This is	the basis of an electric				
The ro	otation is caused because t	he motor effect caus	es a force on each s	side of the coil and the	forces on
each s	side are in	directions.			
	orces are in opposite direct		rent in one side of	the coil is in the opposi	ite direction
	: ii				
Q12	When would two magnet	s experience repulsion	on?		
					[1]
Q13	Give the names of three	magnetic elements.			
	(1)	(2)		(3)	[3]
Q14	Describe the difference b	etween a "permaner	nt magnet" and an	"induced magnet".	
					[3]

Q15 Explain how the behaviour of a compass needle provides evidence that supports the idea that the Earth has a magnetised core.

	[2]
	[2]

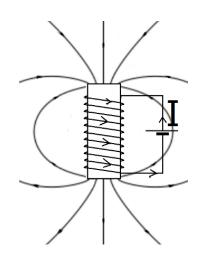
Q16 The diagram shows two bar magnets and the magnetic field lines in between them.

Q16a Explain how the diagram shows that the magnetic field is strongest in the space between the two magnets.

		[1]
Q16b	Add an arrow to each field line to show the direction of the magnetic field.	[1]

[1]

Q17 The diagram shows a straight wire carrying an electric current downwards.
Q17a Add arrows to the field lines to show their direction.
Q17b The magnetic field lines are more closely spaced where they are nearer to the wire. What does that tell you about the magnetic field around the wire?

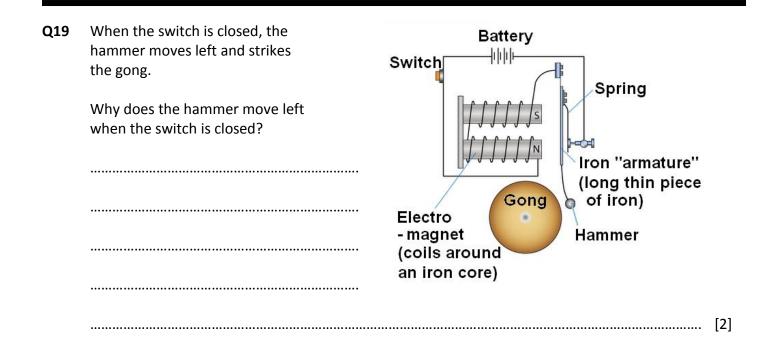

.....

Q18	The diagram shows the magnetic field lines
	around a solenoid.
	Arrows on the solenoid show the direction that
	current is flowing around the solenoid.

Q18a Use the right hand grip rule to work out the direction of the magnetic field lines.

Add arrows to the magnetic field lines to show their direction.

Q18b Explain why the magnetic field around a solenoid stronger than the magnetic field around a straight wire that carries the same electric current?



[1]

	[2]
	[2]

Q18c A solenoid can be used in a recycling centre to separate steel cans from aluminium cans. Suggest how this might be done.

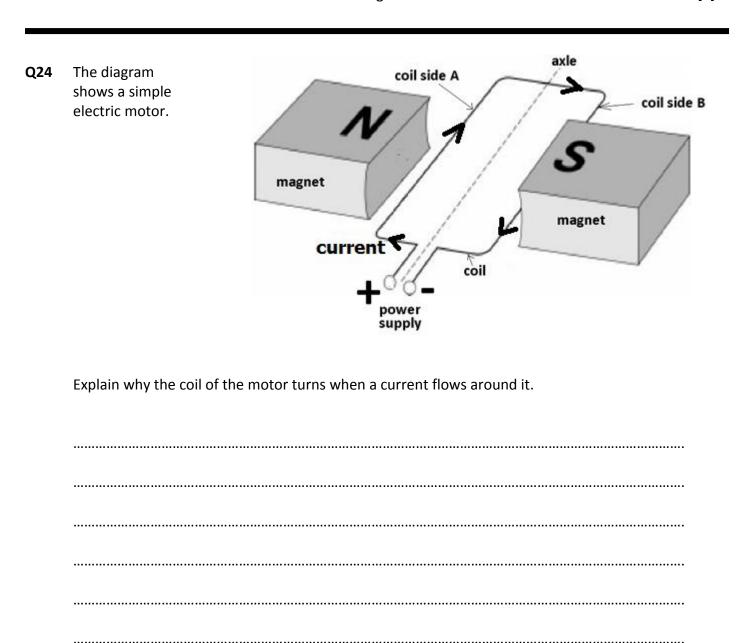
......[3]

HIGHER TIER ONLY

- Q20
 When the switch is closed current flows through the aluminium strip between the magnetic poles. The arrows labelled "current" show the direction of the current flowing around the circuit.
 Image: Current current

 Q20a
 When the current is switched on the aluminium strip is pushed by a force acting on it due to the motor effect. Use Fleming's left hand rule to work out the direction of the force on the magnetic strip. What direction would the force on the aluminium strip be in?
 [1]

 Q20b
 What three things affect the strength of the force acting on the aluminium strip?
 [1]
- Q21 Calculate the force exerted on 1.2 m of wire carrying a current of 2.0 A in a magnetic field of magnetic flux density 0.033 T.The wire is straight and at right angles to the magnetic field.

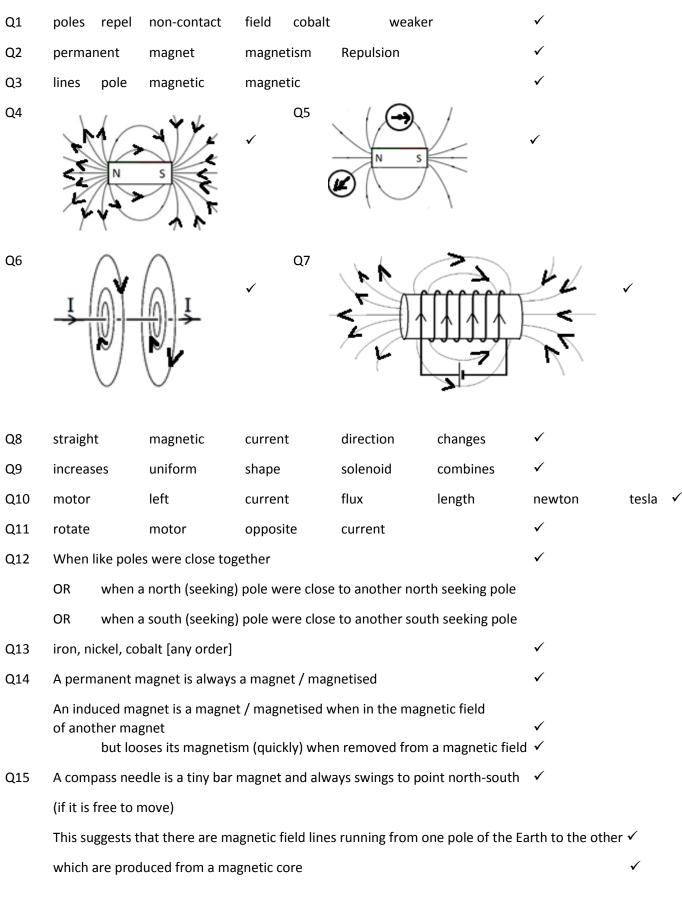

Force = [3]

Q22	A wire of length 80 cm carries a current of 300 mA in a magnetic field of magnetic flux density of 40 mT.							
Q22a	What is "80 cm" in metre?	m	[1]					
Q22b	What is "300 mA" in ampere?	A	[1]					
Q22c	What is "40 mT" in tesla?	T	[1]					

Q22d Calculate the force exerted on the wire by the motor effect.

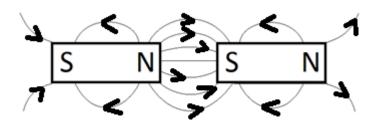
Force = unit [3]

Q23 A wire carries a current of 4.2 A in a magnetic field of flux density 0.22 T. The force exerted on the wire is 0.50 N. Calculate the length of wire in the magnetic field.


.....

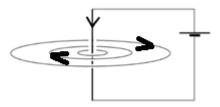
......[3]

Length = [3]


Answers

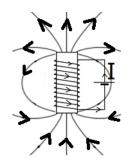
Q16a The (magnetic) field lines are closer / closest together (there)

✓


Q16b

✓

√


Q17a

Q17b

That the (magnetic) field is stronger closest to the wire.

Q18a

Q18b	Each turn of wire produces a magnetic field that is as strong as that produced by a straight wire				
	Putting the turns together combines the magnetic field strength of each turn				
Q18c	Solenoid positioned near to cans	✓			
	Steel cans attracted to solenoid.	✓			
	Aluminium cans not attracted.				
Q19	Current flows through coil(s) & they become magnetised / a magnet / an electromagnet	\checkmark			
	and attract the iron armature				
Q20a	To the right / away from the magnet / towards the cell	\checkmark			
Q20b	magnetic field strength/flux density				
	length of strip in the magnetic field any order	$\checkmark \checkmark \checkmark$			
	electric current flowing in/through strip				
Q21	$F = B I \ell$				
	$F = 0.033 \times 2.0 \times 1.2$	\checkmark			
	= 0.792	\checkmark			
	Ν	\checkmark			

Q22a	0.80 m								\checkmark
Q22b	0.300 A								\checkmark
Q22c	0.040 T								\checkmark
Q22d	$F = B I \ell$								
	$F = 0.040 \times 0.300 \times 0.80$						\checkmark		
		= 0.0	0096	or	9.6 × 1	0 ⁻³			\checkmark
						Ν			\checkmark
Q23	$F = B I \ell$								
	0.50 = 0.22 × 4.2 ×ℓ	OR	0.50 = 0	.924 ×ℓ	OR	ℓ = <u>0.50</u> 0.22 × 4.2	OR 2	ℓ = <u>0.50</u> 0.924	✓
	= 0.54						\checkmark		
				Ν					\checkmark

Q24	4 When current flows around the coil, because it is in a magnetic field, a force acts on the				
	coil (except where the parts of the coil run parallel to the field)	\checkmark			
	The current flows in an opposite direction on opposite sides of the coil	\checkmark			
	so the forces acting on each side of the coil are in opposite directions	\checkmark			
	(causing the coil to turn)				